Construction of 2D Orthographic Projection
Views from 3D Figure and vice versa

Sushant Rathi, Shashwat Shivam
February 24, 2018

Abstract

This paper deals with the mathematics involved in converting 3D Figures
to their orthographic projections and also the methods of reconstruction of 3D
figures using the given orthographic views.

Contents

Converting 3D Figure to 2D views
1.1 Orthographic Projections
1.2 Representation of 3D object in Input

Straight Lines
2.1 Obtaining Hidden Lines

Rotation of 3D Figures
3.1 Basic Rotation
3.2 General Rotation

Creating 3D Solids using 2D Projections

4.1 Assumptions.
4.2 Step 1: Constructing a wire-frame model out of the given projections
4.3 Step 2: Obtaining faces out of the wire-frame to define the 3D solid .

Figure 1: Taking Projections onto different planes.

1 Converting 3D Figure to 2D views

We will be converting 3D figures to 2D views by taking orthographic projections of
the constituent points of the figure, and using properties of an affine transformation
to connect those points. Let us first understand what the relevant terms mean.

1.1 Orthographic Projections

Orthographic projections are a a form of parallel projection in which the projection
lines are orthogonal to the projection plane, resulting in every plane appearing as
an affine transformation on the viewing surface. (Refer to fig) One useful prop-
erty of such transformations is that it preserves straight lines, which means that an
edge in a 3D projection will be a line segment connecting the projections of its end
points after the transformation (unless the points are overlapping). Since we are
considering polyhedral solids which can be represented by their constituent edges,
being able to project vertices is all we will need to obtain the 2D views.

1.2 Representation of 3D object in Input

We assume the object description is given in terms of the 3D coordinates of the
constituent points, and the edge relations (as a wireframe model). While this in-
formation is enough for obtaining 2D projections, to obtain hidden lines we will
need information regarding which points constitute a face as well. We are assuming
that the wireframe representation is enough to determine faces, using our algorithm
described in the section 4.3 .

2 Straight Lines

Considering the 2 end points of an edge, the projection can be easily taking using a
projection matrix. Multiplying both the end points by projection matrices for the
specific plane , we can obtain projections onto the 3 planes.

Considering F,, , P,. and P,. to be the projection matrices onto the respective
planes and A to be the point to be projected the calculations are as follows :-

_ o ITX o
1 00 ’ x;
P, A = Y| =|" (1)
0 1 0] Z, | Y |
_ - I o
010 I |y
PeA= g o 1| |%| =2 (2)
L . _Zi_ L~]
_ 5 ITXT o
1 00 ! x;
P A = 0 0 1] ? o | 2; | (3)

Projections can also be taken onto any general plane by using a projection matrix
P corresponding to that plane :-

PA=A (4)
After taking the projections the points are connected by a straight line.

2.1 Obtaining Hidden Lines

Hidden lines, represented as dotted lines traditionally, are lines that have been oc-
cluded in a view by other faces. To determine if a line is hidden or not, we need
a method to determine whether a particular face occludes a particular edge or not,
and if so what portion of it. We propose the following method for this purpose- If
the end points of an edge are enclosed inside the face projection (which will be a
polygon), consider only those points for comparison. If an end point of an edge is
not enclosed , instead of the end point consider the corresponding point of inter-
section (Refer to figure) . Now that we have two representative points of the edge
(say A and B), our task is to check if these two points lie on the opposite side of
the face plane (opposite to the projection plane). To do so, we take any point on
the face and consider its projection on the projection plane, call it X. We will now
check if A and X are on opposite sides of the face plane or not. Since the edge is
not intersecting the face, all points on line segment AB lie on the same side of the
plane, and hence we can say that if A and X are on opposite sides, the line segment
AB is occluded

To determine if two points A and X are on same side of plane or not, we plug in
the coordinates of the points in the LHS of equation of plane ax +by +cz—d = 0
and compare signs- the points lie on opposite sides iff the signs are different. For
every edge, we iterate over all faces to determine the length of segment occluded,
and take a union over all lengths.

X

Edge occluded
from face

3 Rotation of 3D Figures

Rotation of 3D Figures can be interpreted easily as a multiplication of each point by
a rotation matrix. After this the 2D views can be regenerated by simply projecting
the new points onto the respective planes. Considering R to be the rotation matrix
and A to be the point the new point will now be :-

RA=R (5)

The projections can also be taken directly from the original co-ordinate system
along with the rotation matrix like this :-

RPA = A’ (6)

3.1 Basic Rotation

A basic rotation is the rotation about one of the axes of the co-ordinate system.
Assuming the rotation is of an angle of @ about the x , y and z axis respectively
then the resultant co-ordinates of the rotation are as follows :-

(1 0 0

X; Z;

R,(0)A = |0 cos® —sinf| |Y;| = |y;| = A (7)
|0 sin® cosO | | Z;]| | 2; |
[cos® 0 sin@] [X;] En

R,(0)A = 0 1 0 Y;| = |y;| = A; (8)
|—sinf® 0 cosf]| | Z; Ea
[cos® —sin® 0] [X;] EA

R.(0)A = |sinf cos® 0| |Y;| = |y;| = A (9)
L 0 0]__ _Zi_ _Z,;_

Here R, (0) ,R,(0) and R.(0) are the rotation matrices about the respective
axes.

3.2 General Rotation

Any other general rotation can be obtained using the above three rotations . This
can be done in a stepwise manner about the three axes. The final rotation matrix
R is obtained as follows :-

R = Rz(a)Ry(/g)R:c(7) (10)

where a , B and ~ represent the yaw , pitch and roll respectively of the rotation.

4

L]

Figure 2: Given Orthographic Projections

/

:

AN

Figure 3: Wireframe reconstructed can have AC,BC and CD present as well

4 Creating 3D Solids using 2D Projections

Our method for reconstruction can be split into two parts :-

1. Constructing a wire-frame model out of the given projections.

2. Obtaining faces out of this wire-frame to define the 3D solid.

4.1 Assumptions

To perform these steps in an efficient and correct manner, we have placed the fol-
lowing restrictions on the input provided :

1. We will be dealing with polyhedral solids, and hence only planar
surfaces
This is mainly because we do not have a general method for reconstruct-
ing /representing quadratic surfaces. We could however extend our method to
simpler objects like cylinders later on.

2. The input projections will consist of labelled vertices
This is because otherwise the wire-frame model obtained after step 1 can
contain many pseudo elements, in the sense some of the edges/vertices may
not exist in the actual solid (Refer Figure 2 and 3). Hence the algorithm for
face reconstruction does not guarantee correctness- it mainly requires using
some heuristics like ensuring at least one edge from certain sets exist in the
final solid, edges do not intersect faces, etc.

4.2 Step 1: Constructing a wire-frame model out of the given
projections

This process is fairly straightforward. Since every vertex is visible in every or-
thographic view (overlapping vertices as well), one orthographic view gives us 2

5

coordinates of a vertex. Hence, 2 orthographic views are sufficient to give the 3D
coordinates of a vertex. To construct a wire-frame model, however, we need edge
relations as well (i.e. which vertices are connected directly). Any edge in an ortho-
graphic view can be divided into two categories- either it is perpendicular to the
plane of projection (in which case its projection is a point), or it is not (in which
case its projection is a line segment). Thus, the existence of an edge AB implies
that in each of its projections, A and B are connected either by a line segment or
are overlapping, and at most one view can have overlapping points.

To avoid having to check every possible pair of points for edge relations, we will
pick a particular view (say top), and consider only those pair of points which have an
edge connection in this particular view. We shall then check the other view for exis-
tence of line segment connecting these two points (or whether they are overlapping).

Note that there is a possibility that there exist line segments in the given views
between two points (say A and B) that are corresponding to different edges, that is,
edges whose end-points overlap with A and B in every view. To deal this possibility,
we are assuming that the input provided will indicate when there are multiple line
segments overlapping in a view, in terms of relative thickness of the lines. Also, in
case of overlapping points, the points will be ordered in terms of their distance from
projection plane.

4.3 Step 2: Obtaining faces out of the wire-frame to define
the 3D solid

This algorithm, broadly speaking, consists of forming a graph with planar edge
loops acting as nodes, and shared edges acting as connections between the nodes
(the connection will be labeled by the name of the shared edge between the two
faces). Shared edge here, as the name suggests, is an edge that belongs to both
edge loops. These edge loops cannot cross each other, that is, the respective edges
of any pair of edge loops can either be overlapping, or intersect at their end-points.
The nodes of this graph must now be coloured as valid or invalid, with certain
constraints. Before stating the constraints, let us define an edge incident set.

Definition 1. An edge incident set of an edge is defined as the set of valid planar
edge loops containing that edge.

Before defining what valid nodes (edge loops) are, let us recognize the fact that
only looking at shared edges is not enough to determine if an area bounded by edge
loops is a face or not. This is because a portion of area of a loop can be ‘cutoft” by
another edge loop inside, due to the existence of a hole/extrusion.

To formalize this, let us make a few definitions regarding edge loop containment.

Definition 2. An edge loop X is said to be contained inside another edge loop Y iff
all vertices of X lie inside the area bounded by Y.

1 and 2 are valid planar edge
loops sharing edge AB

s ‘

2

Edge loops 2 and 4 are
predecessors of 1,3 is not

Definition 3. If an edge loop X is contained in Y, and there exists no edge loop Z
such that X is contained in Z and Z is contained in Y, X is said to be predecessor

of Y.

Now let us define what a valid edge loop is.

Definition 4. A planar edge loop X (graph node) is said to be valid if the region
between X and all its predecessors forms a face.

It is easy to see that if X is valid, all its predecessors will be invalid, as both being
valid would imply that the edges forming its predecessors have faces on both sides,
which would make that edge redundant. Also, if X is invalid, all its predecessors
will be valid, otherwise the third constraint stated will be violated.

Thus, if we construct a poset of edge loops defined on the relation of containment,
we can say that for any poset S with a least element, determining the validity of
any edge loop belonging to S will determine the validity of every other edge loop
belonging to S. [Gal00, see chapter 4]

Given the previous definitions, the constraints we must follow in our reconstruc-
tion are-

1. The cardinality of every edge incident set is exactly two.
2. No two edge loops belonging to an edge incident set share the same plane.

3. No two edge loops not belonging to an edge incident set of an edge E, but
containing E, can be planar.

These constraints follow from the fact that the faces form a 2-manifold without
boundary. |[CE00]

Thus, the construction of edge loops will proceed as follows.

1. We will first divide all the edges into sets of co planar edges. After this, for
every set we will obtain a set of edge loops. Assuming we have edge adjacency
relations (by common vertices), this can be done by simply starting at an edge
and running a depth first search from it, and repeating the process for an edge
not visited.

2. Once this is done, for the set of edge loops, we construct posets defined on
the containment relation as defined earlier. This poset will be useful later as
determining validity of any element of a poset determines validity of every
other element as well.

3. Now for every edge E, we consider its the set of edge loops it is a part of (call
it S(E)). If the cardinality of S(E) is 2, both edge loops must be valid (this
follows from first constraint). Thus, we shall first consider only those edges
that satisfy this condition. (If the 2 loops are coplanar, we have violated the
second constraint, and hence a 3D solid is not possible). For every edge loop X
discovered as valid /invalid, we now determine the validity of edge loops of the
poset which X is a part of. After every new discovery, we enforce constraints
2 and 3, which means that if two edge loops belonging to S(E) are planar,
exactly one of them is valid.

4. We repeat the process for the remaining edges, where we maintain count of
the elements belonging to its edge incidence set. If we cannot find any edge for
which the condition stated in 3 holds, we will have to perform branching. This
means we will consider a particular edge loop to be valid, and repeat steps 3
and 4 from then onwards.

5. If we reach at an impossible state from this branching, we backtrack, reversing
the last decision we made. We terminate the process either when we have
managed to colour all the nodes (and not violated any constraint along the
way), or we have looked at all possibilities but have not arrived at an admissible
solution.

References

[CE00] Robert Cipolla and Ralph Martin (Eds). Proceedings of the Ninth IMA
Conference on the Mathematics of Surfaces. Springer, 2000.

[Gal00] Jean Gallier. Discrete Mathematics. Springer, 2000.

	Converting 3D Figure to 2D views
	Orthographic Projections
	Representation of 3D object in Input

	Straight Lines
	Obtaining Hidden Lines

	Rotation of 3D Figures
	Basic Rotation
	General Rotation

	Creating 3D Solids using 2D Projections
	Assumptions
	Step 1: Constructing a wire-frame model out of the given projections
	Step 2: Obtaining faces out of the wire-frame to define the 3D solid

